sexta-feira, 28 de fevereiro de 2014

POLINOMIOS

OPERAÇÕES COM POLINÔMIOS


ADIÇÃO DE POLINÔMIOS



EXEMPLO

Vamos calcular:

(3x²- 6x + 4) + (2x² + 4x – 7)=
=3x²-6x+4+2x²+4x-7=
=3x²+2x²-6x+4x+4-7=
=5x²-2x-3



EXERCÍCIOS 

1) Efetue as seguintes adições de polinômios:

a) (2x²-9x+2)+(3x²+7x-1) _______ (R:5x² -2x + 1)
b) (5x²+5x-8)+(-2x²+3x-2) ______ (R:3x² + 8x - 10)
c) (3x-6y+4)+(4x+2y-2) ________ (R:7x -4y +2)
d) (5x²-7x+2)+(2x²+7x-1) _______ (R:7x²+ 1)
e) (4x+3y+1)+(6x-2y-9) _________ (R:10x +1y-8)
f) (2x³+5x²+4x)+(2x³-3x²+x) _____ (R:4x³ +2x²+ 5x)
g) (5x²-2ax+a²)+(-3x²+2ax-a²) ____ (R: 2x²)
h) (y²+3y-5)+(-3y+7-5y²) ________ (R: -4y² + 2)
i) (x²-5x+3)+(-4x²-2x) __________ (R:-3x² - 7x + 3)
j) (9x²-4x-3)+(3x²-10) __________ (R:12x² -4x- 13)



SUBTRAÇÃO DE POLINÔMIOS

EXEMPLOS

Vamos calcular:

(5x²-4x+9)-(8x²-6x+3)=
=5x²-4x+9-8x²+6x-3=
=5x²-8x²-4x+6x+9-3=
=-3x²+2x+6

EXERCICIOS

1) Efetue as seguintes subtrações:
a) (5x²-4x+7)-(3x²+7x-1) _____ (R: 2x² - 11x + 8)
b) (6x²-6x+9)-(3x²+8x-2) _____ (R: 3x² - 14x + 11)
c) (7x-4y+2)-(2x-2y+5) _______ (R: 5x - 2y – 3)
d) (4x-y-1)-(9x+y+3) _________ (R: -5x – 2y – 4)
e) (-2a²-3ª+6)-(-4a²-5ª+6) _____ ( R: -2a² +2a)
f) (4x³-6x²+3x)-(7x³-6x²+8x) ___ (R: -3x³ - 5x)
g) (x²-5x+3)-(4x²+6) _________ (R: -3x² -5x -3)
h) (x²+2xy+y²)-(y²+x²+2xy) ____ (R: 0)
i) (7ab+4c-3a)-(5c+4a-10) ______ (R: 7ab -c-7a + 10)


MULTIPLICAÇÃO DE POLINÔMIOS


EXEMPLOS

1) 4x(2x-3y ) =
=4x. 2x – 4x.3y
=8x² - 12xy

2) (3x + 5) . (x + 2)
= 3x(x+2) + 5(x + 2)=
=3x²+6x+5x+10
= 3x² + 11x + 10


EXERCICIOS

1) Calcule os produtos

a) 3(x+y) ____ (R: 3x +3y)
b) 7(x-2y) ___ (R: 7x - 14y)
c) 2x(x+y) ___ (R: 2x² + 2xy)
d) 4x (a+b) ___ (R: 4xa + 4xb)
e) 2x(x²-2x+5) _ (R:2x³ - 4x² + 10x)
f) (x+5).(x+2) __ (R: x² +7x +10)
g) (3x+2).(2x+1) __ (R: 6x² +7x + 2)
h) (x+7).(x-4) ____ (R: x² +3x -28)
i) (3x+4).(2x-1) ___ (R: 6x² +5x -4)
j) (x-4y).(x-y) ____ (R: x² -5xy + 4y²)
k) (5x-2).(2x-1) ___ (R: 10x² -9x + 2)
l) (3x+1).(3x-1) ___ (R: 9x² - 1)
m) (2x+5).(2x-5) __ (R: 4x² - 25)
n) (6x²-4).(6x²+4) __ (R:
o) (3x²-4x-3).(x+1) __ (R: 3x³ - 1x² - 7x -3)
p) (x²-x-1).(x-3) _____ (R: x³ - 4x² + 2x + 3)
q) (x-1).(x-2).(x-3) ____ (R: x³ - 6x² - 3x - 9)
r) (x+2).(x-1).(x+3) ____ (R: x³ + 4x² + 3x + 1)
s) (x³-2).(x³+8) _______ (R:
t) (x²+2).(x²+6) _______ (R:



DIVISÃO DE UM POLINOMIO POR UM MONOMIO

Vamos efetuar as divisões:

a) (8x⁵ - 6x⁴) : (+2x) = 4x⁴ - 3x³
b) (15x³ - 4x²) : (-5x) = -3x² + 4x/5


Conclusão:Dividimos cada termo do polinômio pelo monômio.

EXERCÍCIOS

1) Efetue as divisões:
a) ( 12x² - 8x) : (+2x) =
b) (3y³ + 6y²) : (3y) =
c) ( 10x² + 6x) : (-2x) =
d) (4x³ - 9x) : (+3x) =
e) ( 15x³ - 10x²) : (5x²)
f) (30x² - 20xy) : (-10x)
g) (-18x² + 8x) : (+2x)
h) (6x²y – 4xy²) : (-2x)

2) Efetue as Divisões:

a) ( x³ + 2x² + x ) : (+x) =
b) (x² + x³ + x⁴) : (+x²) =
c) (3x⁴ - 6x³ + 10x²) : (-2x²) =
d) (x⁷ + x⁵ + x³) : (-x²) =
e) (3x²y – 18xy²) : (+3xy) =
f) (7x³y – 8x²y²) : (-2xy) =
g) (4x²y + 2xy – 6xy²) : (-2xy) =
h) (20x¹² - 16x⁸ - 8x⁵) : ( +4x⁴) =
i) (3xy⁴ + 9x²y – 12xy²) : (+3xy) =

DIVISÃO DE POLINÔMIO POR POLINÔMIO
explicaremos como se efetua a divisão de polinômios pelo método de chaves, por meio de exemplos.





Exemplo 1



Vamos efetuar a divisão:

(2x² - 5x - 12) : ( x -4)

Observe que os polinômios estão ordenados segundo as potências decrescentes de x.

a)Coloque o polinômio assim:

















b) Divida o primeiro termo do dividendo (2x²) pelo primeiro termo do divisor (x) e obtenha o primeiro termo do quosciente (2x)
















c) Multiplique o primeiro termo do quosciente (2x) pelos termos do divisor , colocando os produtos com sinais trocados embaixo dos termos semelhantes do dividendo. A seguir , reduza so termos semelhantes:












Exemplo 2

Vamos calcular a divisão









Terminamos a divisão, pois o grau de x - 1 (resto) é inferior ao de 2x² - 3x + 1 (divisor)

logo: quociente : 3x² - x - 6
resto: x -1


EXERCICIOS

1) Calcule os quocientes:

a) ( x² + 5x + 6) : (x + 2)
b) (x² - 7x + 10 ) : ( x - 2)
c) (2x² + 6x + 4 ) : ( x + 1)
d) ( x³ - 6x² + 11x – 6) : ( x – 3)
e) ( 7x³ + 27x² - 3x + 4 ) : ( x + 4)
f) (2x³ + 3x² - x – 2) : ( 2x – 3)
g) ( x³ - 6x² + 7x + 4) : (x² - 2x – 1)
h) (3x³ - 13x² + 37x – 50 ) : ( x² -2x + 5)
i) ( 10x³ - 31x² + 26x – 3) : ( 5x² - 8x + 1)
j) ( 4x⁴ - 14x³ + 15x² -17x + 5 ) : (x² - 3x + 1)

quinta-feira, 27 de fevereiro de 2014

2- OPERAÇÕES COM MONÔMIOS

OPERAÇÕES COM MONÔMIOS

O que são monômios ?
Um monômio é uma expressão algébrica racional inteira que representa um produto de números reais.
- Um monômio distinguimos em duas patês:
1) Um parte numérica (constante) que também é chamada de coeficiente .
2) Uma parte literal (variável)

TERMOS SEMELHANTES

Dois termos que têm parte literais iguais, ou que não têm parte literal, são denominados termos semelhantes.
São semelhantes , por exemplo:
1)      6ab e -2ab
2)      3x e 7x
3)      4abc e -2abc
4)      1/4x⁴ e 12x⁴

Observe que:
5x²y³ e 5x³y² não são semelhantes
-3x²y³ e 4y³x² são semelhante


Adição e subtração

Eliminam-se os parênteses e reduzem-se os termos semelhantes.

Exemplos 1

(+8x) + (-5x)
8x – 5x
3x

Exemplo 2

(-7x ) – ( +x)
-7x – x
-8x

Exemplo 3

(2/3x) – (-1/2x)
2/3x + 1/2x
4x/6 + 3x/6
7x/6


EXERCÍCIOS


1) Efetue:

a) (+7x) + (-3x) = (R: 4x)
b) (-8x) + (+11x) = (R: 3x )
c) (-2y) + (-3y) = (R: -5y)
d) (-2m) + (-m) = (R: -3m)
e) (+5a²) + (-3a²) = (R: 2a²)
f) (+5x) + (-5x) = (R: 0)
g) (+6x) + (-4x) = (R: 2x)
h) (-6n) + (+n) = (R: -4n)
i) (+8x) – ( -3x) = (R: 11x)
j) (-5x) – (-11x) = (R: 6x)
k) (-6y) – (-y) = (R: -5y)
l) (+7y) – (+7y) = (R: 0 )
m) (-3x) – (+4x) = (R -7x)
n) (-6x) – ( -x) = (R: -5x)
o) (+2y) – (+5y) = (R: -3y )
p) (-m) –(-m) = (R: 0 )

2) Efetue :

a) (+ 3xy) – (-xy) + (xy) = (R: 5xy)
b) (+ 15x) – (-3x) – (+7x) + (-2x) = (R: 9x )
c) (-9y) –( +3y) – (+y) + (-2y) = (R: -15y)
d) (3n) + (-8n) + (+4n) – (-5n) – (-n) = (R: 5n)

3) Efetue:

a) (+1/2x) + (-1/3x) = (R: 1x/6)
b) ( -2/5x) + (-2/3x) = (R: -16x/15)
c) (-7/2y) + (+1/4y) = (R: -13y/4)
d) (+2m) +( -3/4m) = (R: 5m/4)
e) (+2/3x) - ( -3/2x) = (R: 13x/6)
f) (-3/4y) – (+1/2y) = (R: -5y/4)
g) (+2/5m) – (+2/3m) = (-4m/15)
h) (-3x) –(-2/5x) = (R: 13x/5)

4)   Calcule os monômios

a)      2x + 3x = (R: 5x)
b)      6y – 4y + 5y = (R: 7y)
c)       3a – 6a – a = (R: -4a)
d)      2/5 x²y 3/2 x²y = (R: 19/10 x²y)
e)      1/2ab – 3ab = (R: 5/2ab)
f)       7b + 4b – 6b = (R: 5b)
g)      3/2 y – 2y + 7/3 y = (R: 11/6Y)
h)      3/5 x + x = (R: 8/5x)
i)        8xy – 4xy + 4xy – 8xy = (R: 0xy)
j)        3/7 x + 41/8 x = ( R: 311/56x)
k)      -x² + 2/5 x² = (R: -3/5 x²)
l)        -3p -7p + 18p = (R: 8p)


MULTIPLICAÇÃO


O produto de dois monômios, basta multiplicarmos coeficiente com coeficiente e parte literal com parte literal. E quanto multiplicamos aspartes literais devemos usar a propriedade da potencia que diz para conservar a base e somar os expoentes.
Exemplo
Vamos Calcular:

(3x²) . (2x⁵) =
( 3 . x . x) . ( 2 .x.x.x.x.x.)=
3 .2 x.x.x.x.x.x.x =
6x⁷

Conclusão: multiplicam-se os coeficientes e as partes literais

Exemplos

a) (3x⁴) . (-5x³) = -15x⁷
b) (-4x) . (+3x) = -12x²
c) (-2y⁵) . (-7y ) = 14y⁶
d) (3x) . ( 2y) = 6xy


EXERCÍCIOS

1) Calcule:
a) (+5x) . (-4x²) = (R: -20x³)
b) (-2x) . (+3x) = (R: -6x²)
c) (+5x) . (+4x) = (R: 20x²)
d) (-n) . (+ 6n) = (R: -6n²)
e) (-6x²) . (+3x²) = (R: -18x³)
f) (-2y) . (5y) = (R: -10y²)
g) (+4x²) . (+5x³) = (R: 20x⁵)
h) (2y) . (-7x) = (R: -14yx)
i) (-2x) . (-3y) = (R: 6xy)
j) (+3x) . (-5y) = (R: -15xy)
k) (-3xy) . (-2x) = (R: 6x²y)

 
2) Calcule

a) (2xb) . (4x) = (R: 8x²b)
b) (-5x²) . (+5xy²) = ( R: -25 x³y²)
c) (-5) . (+15x²y) = (R: -75 x²y)
d) (-9X²Y) . (-5XY²) = (R: 45x³y³)
e) (+3X²Y) . (-XY) = ( R: -3x³y²)
f) (X²Y³) . (5X³Y²) = (R: 5x⁵y⁵)
g) (-3x) . (+2xy) . ( -x³) = (R: 6x⁵y)
h) (-x³) . (5yx²) . (2y³) = (R: -10x⁵y³)
i) (-xy) . (-xy) . (-xy) = (R: -x³y³)
j) (-xm) . ( x²m) . (3m) = (R: -3x³m³)

3) Calcule:
a) (1/2x) . (3/5x³) = (R: 3/10x⁴)
b) (-2/3x) . (+3/4y) = (R: -6/12xy ou -1/2xy)
c) (-1/3x²) . (4/2x³) = (R: -4/6x⁵ ou -2/3x⁵)
d) (-x²/3) . (-x/2) = (R: x³/6)
e) (-2x/3) . (6x/5) = (R: -12/15x²)
f) (-10xy) . ( xy²/3) =

DIVISÃO

A divisão de dois monômios, basta dividirmos o coeficiente com coeficiente e parte literal com parte literal. E quanto dividimos  as partes literais devemos usar a propriedade da potencia que diz para conservar a base e subtrair  os expoentes. 


Vamos calcula:

(15x⁶) : (5x²) =
15 . x . x . x. x. x. x : 3 . x . x
3 . x . x . x . x
3x⁴

Conclusão: dividem-se os coeficientes e as partes literais

Exemplos

a) (21x⁶) : (-7x⁴) = -3x²
b) (-10x³) : (-2x²) = +5x
c) (-15x³y) : ( -5xy) = +3x²

EXERCÍCIOS

1) Calcule os quocientes:

a) (15x⁶) : (3x²) = (R: 5x⁴)
b) (16x⁴) : (8x) = (R: 2 x³)
c) (-30x⁵) : (+3x³) = (R: -10)
d) (+8x⁶) : (-2x⁴) = (R: -4x²)
e) (-10y⁵) : (-2y) = (R: 5y⁴)
f) (-35x⁷) : ( +5x³) = (R: -7x⁴)
g) (+15x⁸) : (-3x²) = (R: -5x⁷)
h) (-8x) : (-8x ) = (R: 1)
i) (-14x³) : (+2x²) = (R: -7x)
j) (-10x³y) : (+5x²) = (R: -2xy)
k) (+6x²y) : (-2xy) = (R: -3x)
l) (-7abc) : (-ab) = (R: 7c)
m) (15x⁷) : ( 6x⁵) =
n) (20a³b²) : ( 15ab²) =
o) (+1/3x³) : (-1/5x²) =
p) (-4/5x⁵y) : ( -4/3x³y) =
q) (-2xy²) : ( xy/4) = (R: -8y)


2) Calcule


a)      (10xy) : (5x) = ( R: 2y)
b)      (x³y²) : (2xy) = (R: 1/2 x²y)
c)       (-3xz²) : (-3xz) = (R: z)
d)      (-14m⁶n³) : ( 7m⁴n²) = (R: -2m²n)
e)      (1/2a³b²) : (-a³b²) = (R: -1/2)
f)       (a⁴b³) : (5a³b) = (R: 1/5 ab²)
g)      (-3xy³) : (-4x²y) = (R: 3/4x³y²)
h)      (-2/3 xz) : 5/3 z = (R: -2/5 x)

POTENCIAÇÃO


Para elevarmos um monômio a uma potência devemos elevar cada fator desse monômio a essa potencia. Na pratica elevamos elevamos o coeficiente numérico à potencia e multiplicamos cada um dos epoentes das variáveis pelo expoente da potencia.


Vamos calcular:

(5a³m)² = 25 a⁶m

Conclusão : Para elevarmos um monômio a uma potência, elevamos cada um de seus fatores a essa potência.

Exemplos

1) (-7x)² = 49 x²
2) (-3x²y)³ = -27x⁶y³
3) (- 1/4x⁴)² = 1/16x⁸


EXERCÍCIOS

1) Calcule:

a) ( + 3x²)² =
b) (-8x⁴)² =
c) (2x⁵)³ =
d) (3y²)³ =
e) (-y²)⁴ =
f) (-mn)⁴ =
g) (2xy²)⁴ =
h) (-4x²b)² =
i) (-3y²)³ =
j) (-6m³)² =
k) (-3x³y⁴)⁴ =
l) (-2x²m³)³ =

2) Calcule:

a) (x²/2)³ =
b) (-x²/4)² =
c) (-1/2y)² =
d) (+2/3x)³ =
e) (-3/4m)² =
f) (-5/6m³)² =

RAIZ QUADRADA

Para extraimos a raiz de um monômio efetuamos a raiz de seu coeficiente numérico e a raiz de seus fatores. Na pratica isso equivale a dividirmos cada expoente pelo indice da raiz.


Aplicando a definição de raiz quadrada, temos:

a) √49x² = 7x, pois (7x)² = 49x²
b) √25x⁶ = 5x³, pois (5x³)² = 25x⁶

Conclusão: para extrair a raiz quadrada de um monômio, extraímos a raiz quadrada do coeficiente e dividimos o expoente de cada variável por 2

Exemplos:

a) √16x⁶ = 4x³
b) √64x⁴b² = 8x²b

Obs: Estamos admitindo que os resultados obtidos não assumam valores numéricos negativos

EXERCÍCIOS

1) Calcule

a) √4x⁶ =
b) √x²y⁴ =
c) √36c⁴ =
d) √81m² =
e) √25x¹² =
f) √49m¹⁰ =
g) √9xb² =
h) √9x²y² =
i) √16x⁸ =

2) Calcule:

a) √x²/49 =
b) √x²/25 =
c) √4/9x⁸ =
d) √49/64x¹⁰ =
e) √25/81yx⁶ =
f) √121/100 x²m⁸ =